

Featuring:

The Trident® Acetabular System has been implanted throughout the world since 1999 and, while commercially available, has also been included in a clinical evaluation through an IDE study in the United States. More than 10,000 Trident® shells have been implanted globally and the success of the Trident® System continues to expand in the US. All Trident® Acetabular Shells feature the Innerchange™ Locking Mechanism, which provides independent locking of polyethylene or ceramic inserts* into the shell.

The Trident® Acetabular System offers:

- Superior locking mechanisms for both polyethylene and ceramic inserts*
- Crossfire® polyethylene for improved wear performance
- The thickest polyethylene on the market
- Choice of shell geometries
- Arc-deposited roughened surface to help achieve immediate stability
- Purefix[™] HA
- Eccentric and Constrained Inserts for revision options

The Trident® PSL® Acetabular Shells are designed to maximize fixation in the peripheral lunate region of the acetabulum. Purefix™ HA coating is featured on all Trident® PSL® shells.

Trident® Hemispherical Acetabular Shells are a true hemispherical shape designed to achieve press-fit fixation by under-reaming the acetabulum.

○ Innerchange[™] Locking Mechanism

The Innerchange™ Locking Mechanism allows for independent locking of polyethylene and ceramic inserts into the shell. This provides superior locking of both inserts without compromise.

The Trident® polyethylene insert allows for proper rotational alignment using 12 indexable scallops. Polyethylene inserts lock into the shell in three ways:

- Four alignment studs on the shell provide proper rotational and axial alignment
- Unique bead and groove mechanism
- Additional rim locking provides for exceptional insert stability

Extensively Tested Locking Mechanism

- Fully congruent design
- Independent testing by Alan Litsky, MD, PhD at Ohio State University¹
- Robust push-out and lever-out resistance²
- Hip simulation testing with Crossfire® polyethylene has demonstrated improved wear performance³

Polyethylene

Trident® polyethylene inserts are:

- Fully congruent to the shell
- Supported by extensive research on range of motion and head stability¹⁰
- Available in neutral, hooded and eccentric designs

Polyethylene Thickness

Polyethylene thickness plays an important role in the wear performance.⁴ Size for size, the Trident[®] polyethylene inserts are the thickest in the industry.

Shell fully supports the Trident® insert

Crossfire® Highly Crosslinked Polyethylene

Crossfire® Highly Crosslinked polyethylene has demonstrated significant wear reduction compared to standard polyethylene. Howmedica Osteonics' technology and conservative process have allowed increased crosslinking while maintaining the material properties of the polyethylene.

• 90% reduction in wear⁵

Crossfire® polyethylene demonstrates 90% reduction in wear over nitrogen sterilized polyethylene in joint simulation testing, thereby reducing the potential for osteolysis.

· Material properties are retained

The material properties of Crossfire® polyethylene are similar to those of standard polyethylene, as shown in *Figure 1*.

• Preserves the polymer structure of UHMWPE

The crystalline and amorphous regions of Crossfire® are similar to standard polyethylene which suggests predictable clinical performance⁶ (Figure 2).

• N₂/Vac[™] packaging provides resistance to oxidation

Packaging polyethylene in an oxygen-free environment improves material toughness and strength on shelf-stored polyethylene up to 10 years.⁷

• Same particle size and shape as standard polyethylene

The biological response to Crossfire® particles is not expected to be different from standard polyethylene.

Figure 1 Crossfire® polyethylene maintains similar yield strength, modulus and crystallinity as standard polyethylene. When these properties change significantly, the clinical wear performance cannot be predicted.

Figure 2 Crossfire® exhibits a morphology that is very similar to that of standard UHMWPE